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Wavefunctions in the phase-integral approximation, which is closely related to the 
JWKB approximation, may be expressed as expansions in terms of functions Ys, first 
defined by N. Froman. Previously, only the functions up to Y, have been known. This 
paper presents computed expressions for the functions through YzO . 

For the equation 

(1) 

where h is small and Qz(z) is usually assumed to be real when Im z = 0, a solution 
of the form 

is the JWKB approximation of order M. When (2) is substituted into (I), the 
functions ym(z) are determined by the requirement that the multiplier of each 
power of h in the resulting equation should be zero. In particular, y, = +Q. 
The remaining functions follow from the recurrence 

dym-l(z) -= 
dz --i 5 Y,(Z) Ym-U(Z)’ 

LL=O 

The equation (3) provides a basis for showing that there is an alternative form [l] 
of the approximate # in which all odd-order functions y,,+,(z) are eliminated in 
favor of even-order functions. When this is done, the alternative version of # is 

#(z> = ew (+ j ~oh2n~2&) nz)l(X-li2 f X2n~2n(4), (4) 
VL=O 
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which is the phase-integral approximation of order 2N + 1. A comparison of (2) 
and (4) suggests that it is easier to work with the phase-integral approximation 
than with the JWKB approximation for high orders. 

There are two independent approximate solutions contained in (4), which are 
evident from (3) and from the fact that y,,(z) is two-valued. The solutions are the 
expressions 

4-W) exp (32 J q(z) dz), 

where 

4(z) = ygo Y&Z), 
and YZ, is a convenient abbreviation for combinations of the y functions which 
may be computed from (3). Explicitly, they are given [I] by the defining relation 

(6) 

for n > 1. Since the lowest-order JWKB and phase-integral approximations are 
identical, it is obvious without the use of (3) that Y,(z) = 1. With a little more 
effort, one finds that Y,(z) = &, , where 

E. = (LJ $ (q)-““. 

In (6), each prime on a Y function denotes one differentiation with the operator 
XQ-l(z)(d/dz). The primes on the summations in (6) have a different meaning: 
it is required that at least two Y functions appearing in any term of each sum 
should have subscript indices greater than zero. 

In a general determination of Y,, from (6), there is no need to differentiate 
directly with respect to z. It is possible to write all Y functions purely in terms of 
Ed and quantities 

( 
h d” E - -- 

m - Q(z) dz Co ’ 1 

where 1 < m < 2n - 2 (excluding 2n - 3) for a given n. 
Evaluation of Ysn by hand quickly becomes rather difficult as II increases. For 

example, the number of terms in the sum over products of four Y functions [2] 
is (n + l)(n + 2)(n + 3)/6. Frijman has given the values of Y, , Y, and Y, in 
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the same paper in which Eq. (6) is introduced, but the expressions calculated 
by F. Karlsson and S. Yngve for Y, and Y, did not appear in print for another 
four years [3]. In some circumstances there is a need for the higher functions, 
with n > 4, to check the accuracy of certain approximations to Y,, near values 
of z for which Qz(z) has either a zero or a pole [2]. It is apparent that further 
calculations are unlikely to be either fast or rewarding without the help of a 
computer. 

Several symbolic computing systems exist in which programming of the algo- 
rithm contained in (6), or alternative algorithms for Y,, , is highly convenient. 
Amongst the better-known systems are CAMAL [4], SAC-2 [5], REDUCE-2 [6] 
and SYMBAL [7]. The exercise has been programmed in all of these systems, 
for use as a bench-mark problem for evaluation of performance which will be 
discussed in a subsequent paper. In terms of computing time, however, the winner 
is the dark-horse entry TRIGMAN [8], which has computed the functions through 
Y,, in 10.595 set on a CDC 6600, Y,, in 17.904 set, and Y,,, in 30.920 sec. The 
programs themselves are quite short (e.g., 15-20 lines) in most of the systems, 
which require the user to write in ALGOL-like dialects for the symbolic computa- 
tion, but up to five times longer in the systems (SAC-2, TRIGMAN) based on 
FORTRAN. In the bare versions of SAC-2 and TRIGMAN, pure FORTRAN 
statements which everyone can understand are mixed with many calls to special 
subroutines for the symbolic operations. Therefore, a user who wishes merely 
to write 

X = Y(2)*Y(12) + EO*Y(14) 

for the combination of some functions in (6) may be compelled to write 

(7) 

CALL YPROD(Y(2), Y(12), X) 

CALL YPROD(E0, Y(14), W) 

CALL YSUM(X, W, X) 

CALL ERASE(W) (8) 

instead. This leads to alienation. The answer to the difficulty is that SNOBOL [9] 
translators, complete for TRIGMAN and under development for SAC-2, carry 
statements such as (7) for symbolic quantities automatically into subroutine 
calls (8) or blocks of subroutine calls before the final FORTRAN compilation. 
Thus they allow the user to write shorter programs and to work in a language 
with which he is already familiar from numerical computations without having 
to pick up a detailed knowledge of the interior workings of the special algebraic 
subsystems. 

All runs of programs in different languages have generated results in agreement 
with each other, which is pleasing. 
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Independently of this reassurance, there are two other small checks on computed 
expressions for Y,, : Skorupski [2] has pointed out that Yzn must always contain 
the terms 

(-1)“‘1(2n)! Eon 
22”(n !)2(2n - 1) 

and 
(- l)n+%r+2 

22n-1 

for n > 1. As well as fulfilling these requirements, the results given below suggest 
some other regularities which may be regarded as propositions for eventual 
proof, e.g., 

(i) The coefficient of ct-2~2 is 

(- I)“+1 (2n - 3)! 
22n-1 [(n - 2)!]2 * 

(ii) For terms proportional to et-‘, only terms in $-3~12 and E~-~E,, enter, 
and the ratio of the former term to the latter is 5. 

(iii) The coefficient of •~-~E~ is 

(-l)n+l (2n - 3)! 
3.22n (n-2)!(n-3)!’ 

(iv) The coefficient of ~~~~~~~~~ is (- 1) n+l 22-2”(2n - 3)(2n - 5)(2n - 7)(2n - 9)/3. 

(v) The coefficient of ~~~~~~~~ is (- I)+l 23-2n(2n - 3)(2n - 5)(2n - 7)/3. 

(vi) The coefficient of ~~~~~~~~ is (- I)n+l 22-2n(2n - 3)(2n - 5). 

(vii) The coefficient of ~~~~~~~ is (-l)*+l 22-2n(n - 2)(2n - 1). 

(viii) The coefficient of •0~2n-4 is (- l)“+l 22-2n(2n - 3). 

All of these propositions refer to Y,, . They are examples of the possibility of 
using a symbolic computing system conversationally to discover interesting general 
relationships among the particular data which are either the subjects or the products 
of a computation. 

The construction of a difference table hints that, for n larger than the values 
considered here, Yzn will be a sum of (2n” - 30n2 + 175n - 339)/3 terms, or at 
least that this quantity will be a lower bound on the expected number of terms. 
The result has acted as a deterrent to the evaluation of the Y functions beyond 
n = 10: the project is practical as far as computing time and requirements of 
storage are concerned, but not necessarily practical in face of the predicted bill 
for the computation under the accounting system for the machine on which this 
work has been carried out. 

The writing of a symbolic program around Eq. (6) is straightforward, except 
perhaps for the treatment of the sum over Yzo, Y,, Y2, Y28 , and for the observation 

581/10/z-10 
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that the sum over YzaYzs for a given n should be stored as soon as it is calculated 
because it provides the bulk of the sum over E,,Y~~Y~~ in the next iteration, when n 
is increased to n + 1. For the sum whose terms are products of four Y functions, 
the fastest method of computation seems to be to arrange that 01 < p ,< y z; 6, 
and to multiply each resulting term by a weighting factor which is 24 if all indices 
are distinct, 12 if only two indices are equal, 6 if two distinct pairs of equal indices 
occur, 4 if three indices are equal, and 1 otherwise. Further, time and space are 
saved in some systems if each such term is written as F,sVYzs , where 
Fasy = Y,, YzsYzV need be calculated and stored only once for each combination 
of indices. 

The computed functions Y,, are as follows: 

Y,= 1, 

Yz = ; Eg ) 

Y4 = - ; CEO2 + E2>, 

Ytj = +2(2~,3 + 6~0~2 + 5~1~ + ~4)~ 

1 
Y, = - - (5E,4 + 3OE,%, + 5OE,E,2 + 10EOE4 + 28E1E3 + 19E,2 + Es), 

128 

Y,, = 1. (14~~ + 140~~~~ + 350~,,~~,~ + 70~~~~ + 392606163 + 266<,,~,~ 

Y 12 

Yl4 

+ 14~~~ + 442~~~~~ + 54~~ + 110~~~~ + 69e32 + E& 

- & (42~: + 630~,~~, + 420~~~ [5c12 + e4] 

+ ~,~[3528~,~, + 2394c22 + 126~1 
+ q,[7956e12c2 + 972qc5 + 1980~,~, f 1242~~~ + 18~3 
+ 1105~~ + 1630~~~~~ + •[55646~6~ + 88~,] + 1262~~~ + 238~~~ 
+ 418~ + 251~~~ + qO), 

& (132~,7 + 2772~,,~~, + 2310~,~[5~,~ + e4] 

+ l ,~[25 872~~~~ + 17 556~~~ + 924e,] 
+ ~,,~[87 516~~~~~ + 10 692E1Eg + 21 780~~~ + 13 662~~2 + 1986,] 
f l ,[24 310~1~ + 35 860~1~~4 + 122 408~1~2~3 + 19366,<, + 27 764~~~ 
+ 52366,~ + 91966,6, + 5522~~~ + 22~,] 
+ 33 760~~~~ + l l2[69 006~~~ + 4270~1 
+ l ,[20 376~~~~ + 30 776~~~~ + 130~3 
+ 20 922c22c4 + e2[26 322~~~ + 438~1 
+ 988c3e, + 1582~~~ + 923c,2 + c12), 
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‘16 = - JL- (429Q8 + 12 012 E&2 + 12 012E,5[5E12 + Ed] 
32 768 

+ co4[168 168~~~ + 114 114~~ + 6006~~3 
+ co3[758 472~~~~ + 92 664~~ + 188 760~~~~ + 118 404$ + 1716r,l 
+ l ,,~[316 030~~ + 466 180~~~~ + ~(1 591 304~~~~ + 25 168~~) 
+ 360 932e23 + 68 068~~~~ + 119 548~~~ + 71 786~~2 + 286~,] 
+ l ,[877 760~~~~ + l 1”(1 794 156~~~ + 111 0206,) 
+ q(529 776~~~ + 800 176~~6~ + 33806,) + 543 972e22e4 
+ ~~(684 372~; + 11388~) + 25 688 l 3eT + 41 132~~~~ + 23 998e52 + 26~~1 
+ 496 950c14e2 + 144 780~~~~~ + q2[893 724~~~~ + 562 474~~2 + 921&,] 
+ l [l 533 408~~~~~ + 56 328~~~~ + 113 456~~~~ + 159 268~~~ + 180~J 
+ 174 317~~~ + 76 986e22e6 + l ,[272 108~~~~ + 163 722~~~ + 7266,,,] 
+ 206 138~~~~~ + 2000~,~, + 4002~~~ + 6004~~~~ + 3431~~2 + c14), 

Y,, = & (1430~~~ + 51 480~~~ + 60 060~,,~[5~~~ + cl] 

+ l o5[1 009 008~~~ + 684 684~~~ + 36 036~~1 
+ co4[5 688 540~~~~~ + 694 980y5 + 1 415 700~~~~ 
+ 888 030~~~ + 12 870~~] 
+ l ,,“[3 160 300~~~ + 4 661 800~~~~~ + ~(15 913 04Oc,a, + 251 6806,) 
+ 3609 320~~~ + 680 680~~~~ + 1 195 480~~6~ + 717 860~~2 + 2860~~1 
+ $[13 166 ~OOE,~E, + ~~(26 912 340~~~ + 1 665 300e6) 
+ ~(7 946 640~~~ + 12 002 640~~~~ + 50 700~~) + 8 159 580~~~~~ 
+ ~~(10 265 580~~~ + 170 820~) + 385 320e,r, + 616 980c4e6 
+ 359 97OE,2 + 3906,,] 
+ c,[14 908 50O~,~c, + 4 343 400q3c5 

+ ~~~(26 811 720E2E4 + 16 874 220~~~ + 276 300~) + ~~(46 002 240~,%, 
+ 1 689 840~~~~ + 3 406 380~~~~ + 4 778 040~~~ + 5400~~) + 5 229 510~~4 
+ 2 309 580$2+, + ~~(8 163 240~~~ + 4 911 660~~~ + 21 780~~) 
+ 6 184 140~~~~~ + 60 000~~~~ + 120 060~~~~ + 180 120~~~ 
+ 100 930c02 + 3Oe,,] + 828 250~~ + 3 682 110~~~~~ 
+ l I3[25 313 832~~~~ + 457 92Oc,] 
+ e12[17 287 012~~ + 3 762 444~~~~ + 6 653 604~~~~ 
+ 4 003 97OE,2 + 17 4906,,] 
+ E1[9 055 188~~~~ + ~~(27 473 720~~~~ + 130 380~) + 5 771 864~~3 
+ 328 056~3~ + 592 336~~~ + 790 828~~~~ + 238qJ + 6 240 260~~3~~ 
+ ez2[1 1 803 634~~~ + 222 186~1 
+ e2[l 009 928e3e7 + 1 623 780~~~~ + 948 614~~~ + 1118~,] 
+ 1 022 138E32E, + e3[2 876 836~~~ + 3638~~1 + 577 502~~~ + 8734~~~~ 
+ 16 014~~~~ + 22 878~~~ + 12 869c72 + l l6), 
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1 

“’ = - 524 288 
~ (4862~;~ + 218 790~,*,~ + 291 720~,~[5~,~ + e4] 

+ co6[5 717 712~~~~ + 15 519 504~~~ + 204 204~~3 
+ eo5[38 682 072~~~ + 4 725 864~~~ + 9 626 760~~~ 
+ 6 038 604~~~ + 87 516~1 
+ co4[26 862 550~~ + 39 625 300+, + 135 260 840~~~~~~ + 30 679 220~~~ 
+ 2 139 280~~~~ + 5 785 780~~~~ + 10 161 580~~~~ 
+ 6 101 81OQ + 24 310q0] 
+ co3[149 219 200e13e, + ~~~(305 006 520~~~ + 18 873 4006,) 
+ ~(90 061 920~~~~ + 136 029 920~~~~ + 574 6006,) + 92 475 240~~~~~ 
+ ~~(116 343 240~2 + 1 935 960~) + 4 366 960~~~ + 6 992 440~~6~ 
+ 4 079 660~~ + 4420~,] 
+ co2[253 444 ~OOE,~E, + 73 837 800~~~~ 
+ ~~(455 799 240~~~~ + 286 861 740~~~ + 4 697 100~) 
+ ~~(782 038 080~~~~~ + 28 727 280 e2e7 + 57 862 560~~~ + 81 226 680~~~~ 
+ 91 800r,,) + 88 901 670~~~ + 39 262 860~~~~ 
+ ~~(138 775 080~~~~ + 83 498 220~~~ + 370 260~~~) + 105 130 380~~2~~ 
+ 1 020 000~~~~ + 2 041 020~~~~ + 3 062 04Oe,c, + 1 749 810~2 + 51Oq,] 
+ qJ28 160 500~~~ + 125 191 740~~~~~ + ~~~(860 670288~~~~ + 15 569 2806,) 
+- ~~(587 758 408~~~ + 127 923 096~~~ + 226 222 536~~~ 
+ 136 134 980~~~ + 594 660~~~) 
+ ~(307 876 392~~~~~ + ~~(934 106 480~~6~ + 4 432 9206,) 
+ 196 243 376~~~ + 11 153 904~~~ + 20 139 424~~6~ 
+ 26 888 152~~~~ + 8092~~) + 212 168 840~~~~~ 
+ ~~~(401 323 556~~~ + 7 554 3246,) + ~~(34 337 552~~~~ + 55 208 520~~~ 
+ 32 252 876~~ + 38 012~~) + 34 752 692~~~~ 
+ ~~(97 812 424~~~~ + 123 692~) + 19 635 068~~~ + 296 956~~~ 
+ 544 476~~~ + 777 852~~ + 437 546~~~ + 34~3 
+ 71 247 480~~~~ + e14[243 564 834~~~ + 17 419 710~3 
+ l I3[168 013 536~~~ 4 255 034 560~~~~ + 1 192 500cg] 
+ e12[521 971 140~~~~~ + ~~(658 508 748~~~ + 12 214 8846,) 
+ 27 776 808~~~~ + 44 667 220r,c, + 26 095 426~~ + 30 342c,,] 
+ ~,[599 658 104~~~~~ + 37 731 072~~~~~ 
+ ~~(152 957 768~~~ + 215 356 288~~~ + 266 724qJ + 135 746 860~~~~ 
+ ~~(163 583 608~~~ + 804 804e,,) + 1 775 980~~~~ + 2 964 924~~ 
+ 3 814 924~~~ + 304~,,] + 40 983 566~~~ + 34 680 068~~~~ 
+ ~,~[184 792 292~~~ + 111 364 926~~~ + 544 170~~~1 
+ l ,[281 008 100~~~~~ + 3 021 740~~~ + 6 076 140~~~~ + 9 140 140~~~~ 
+ 5 227 602~~ + 163Oe,,] + 29 551 761~~~ + 3 823 398~~~6~ 
+ c,[13 857 916~~~~ + 18 534 652~~~~ + 6118~~3 
+ 11 165 226~~~~~ + l ,[13 055 198~~~ + 17 134~~~3 
+ 37 126~~~~~ + 63 646~~~~ + 87 514~~~~ + 48 619~~~ + E&. 
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